Dr. Muhammad Asif

Assistant Professor
muhammad.asif@ue.edu.pk

HEC Approved Supervisor

Journal Papers:

Sr # Description
1 Khan, W. A., Ali, K., Fida, A., Asif, M., Pham, V. H., Nguyen, Q. H., & Le, T. T. (2024). Some novel concepts of intuitionistic fuzzy directed graphs with application in selecting a suitable place for opening restaurant. Heliyon.
2 Maqbool, M. A., Asif, M., Imran, M., Bibi, S., & Almusharraf, N. (2024). Emerging E-learning trends: A study of faculty perceptions and impact of collaborative techniques using fuzzy interface system. Social Sciences & Humanities Open, 10, 101035.
3 Asif, M., Abbas, S., Khan, M. A., Fatima, A., Khan, M. A., & Lee, S. W. (2022). MapReduce based intelligent model for intrusion detection using machine learning technique. Journal of King Saud University-Computer and Information Sciences, 34(10), 9723-9731.
4 Batool, T., Abbas, S., Alhwaiti, Y., Saleem, M., Ahmad, M., Asif, M., & Elmitwal, N. S. (2021). Intelligent model of ecosystem for smart cities using artificial neural networks. Intelligent Automation & Soft Computing, 30(2), 513-525.
5 Fatima, S. A., Hussain, N., Balouch, A., Rustam, I., Saleem, M., & Asif, M. (2020). IoT enabled smart monitoring of coronavirus empowered with fuzzy inference system. International journal of advance research, ideas and innovations in technology, 6(1), 188-194.
6 Fatima, A., Abbas, S., Asif, M., Khan, M. A., & Khan, M. S. (2019). Optimization of governance factors for smart city through hierarchical mamdani type-1 fuzzy expert system empowered with intelligent data ingestion techniques. EAI Endorsed Transactions on Scalable Information Systems, 6(23), e8-e8.
7 Fatima, A., Khan, M. A., Abbas, S., Waqas, M., Anum, L., & Asif, M. (2019). Evaluation of Planet Factors of Smart City through Multi-layer Fuzzy Logic (MFL). ISeCure, 11(3).
8 Alyas, T., Ahmad, G., Saeed, Y., Asif, M., Farooq, U., & Kanwal, A. (2019). Cloud and IoT based Smart Car Parking System by using Mamdani Fuzzy Inference System (MFIS). ISeCure, 11(3).


Disclaimer: Profiles are editable by employees who may share the data of publications, experience and education up to the extent they want to share. Also University of Education Lahore is not responsible for any display of data on personal profiles.